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Abstract: - Emitter signals identification is one of the key procedures in signal processing of Electronic 
Intelligence (ELINT). Jitter is an unintentional form of modulation that can have a wide variety of sources. 

Timing-related data errors will occur if jitter is beyond acceptable limits. Designers need a fast and easy way to 

obtain a complete characterization of clock jitter in microprocessor controlled. To enhance the ability of emitter 

identification (EID) to meet the requirement of modern ELINT, a novel identification approach for radar emitter 

signals based on type-2 fuzzy classifier is presented in this paper. This work discusses the impact of unknown 

jitter sampling on signal estimation. Based on the ELINT feature extraction of radar emitter signals, the type-2 

fuzzy classifier is applied to identification of highly jittered radar emitters effectively. Experiment results shows 

that the approach can achieve high accurate classification even at higher error deviation level, and has good 
characteristics of identification. 
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I. INTRODUCTION 
Radar emitter signal identification is one of the key procedures of radar electronic intelligence 

(ELINT). In operational environments, it is important to know every radar emitter whether it is friend or foe, so 

that any counter measure could be applied in time. Number of homogenous pulse trains depends on radar 

transmitter power, sensitivity of ELINT equipment, distance to radar, antennas gain, methods of scanning and 

propagation conditions. Measurement information is included in so called pulse descriptor words (PDWs). Each 

PDW information depicting each particular pulse includes: radio frequency (RF), pulse amplitude (PA), pulse 

width (PW), pulse repetition interval (PRI), time of arrival (TOA), and direction-of-arrival (DOA) and so on. In 
the present days mostly, PDWs processing are virtually everywhere. The trend is toward more capable 

microprocessor-controlled systems that will run at faster and faster clock rates. As clock rates increase, 

characterization of timing accuracy and jitter becomes more important. Designers are finding an increased need 

to characterize jitter in order to achieve error-free design goals. Simply stated, jitter is just noise. The noise 

causes an uncertainty in the relative position of each clock cycle. Excessive clock jitter can limit performance in 

ELINT equipment. Because clock jitter is nothing more than the time variation between the edge of a clock 

signal and its ideal location in time, most engineers can intuitively relate to the basic definition of jitter. Period 

jitter is measured in the time domain and is expressed as either the rms or peak to peak of the time variation. 

Period jitter is defined as the variation in the time difference between the edge of a reference edge and the same 

edge of the clock uncertainty interval-valued clock cycles(Figure 1) . 

 

 

Figure 1.  The clock uncertainty interval-valued clock cycles in ELINT modulation 

Jitter is an unintentional form of modulation that can have a wide variety of sources. Timing-related 

data errors will occur if jitter is beyond acceptable limits. Designers need a fast and easy way to obtain a 

complete characterization of jitter in microprocessor controlled ELINT. The impact of jitter can vary widely 

from one application to another. Because jitter takes many forms, it is important for the engineer to understand 
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which jitter measurement and emitter identification (EID) problems are most appropriate for ELINT equipment 

[1]. For many practical EID methods, including statistical pattern matching and probabilistic models [2, 3], data 

clustering [4], fuzzy classification [5] and neural networks [6-8] have drawn much attention and been applied in 

recent years. The statistical pattern recognition methods usually explore statistical properties in the data set and 

they perform well when such knowledge is known a priori. These methods are inefficient and time-consuming 

for solving EID problems. All these often fail to identify signals under high signal density environment, in near 

real time. Main problems arise from the uncertainty measures which may all decrease the accuracy of 
classification. Therefore, the primary focus of this paper is on the interpretability and uncertainty of PDWs. 

Fuzzy logic (FL) has proven its potential for estimating and minimizing the effect of uncertainties that are 

present in PDWs modeling environment [9]. This property plays an important role in this work aimed at 

handling the EID uncertainty dynamics in the given feature space. The type-2 (T2) FL is an emerging 

methodology that is capable of dealing with more than static imprecision in data [10]. Probability theory is used 

to handle random uncertainty and fuzzy sets are used to handle linguistic uncertainty, and sometimes fuzzy sets 

can also be used to handle both kinds of uncertainty, because a FL-based approach may use noisy measurements 

or operate under random disturbances. A type-2 fuzzy set has a capability to provide proper estimation of 

dispersion in uncertain conditions [11]. It is found that a type-2 fuzzy set is capable to handle and minimize the 

effect of both linguistic and random uncertainties, simultaneously. Hence, it is expected that a T2 fuzzy 

classifier should explicitly define the rule that governs an effective EID classification. In this work the concept 
of an application of a fuzzy classifier designed in the framework of type-2 fuzzy logic to the EID classification 

problem is developed. According to above information and due to existing uncertainty in EID problem, the 

design of a type-2 fuzzy classifier and its performance are discussed in this paper. Finally, the tests for the 

robustness of the classifier in the presence of jitter were carried out.  

Section II outlines the background employed in this work. The EID data and a feature extraction 

procedure are described first. Next, we describe the type-2 fuzzy sets. In section III design of a type-2 fuzzy 

classifier and its operation scheme are proposed. In section IV the experimental results are presented and 

discussed. Finally, the paper is concluded and a scope of further work is suggested in section V. 

 

II. PROBLEM STATEMENT 
Radars typically emit thousands of pulses every micro second and in most scenarios there are many 

types of radar operating simultaneously interleaving radar pulse trains. The main function of ELINT is the real-

time identification of the radar type associated with each pulse train that is intercepted. Current approaches 

adopted in actual applications are that the incoming emitter signals are sorted into individual pulse trains, then 

the characterizations of the pulse trains are compared with a library of parametric descriptions, a list of likely 

radar types will be yielded (Fig.2).The ELINT receiver picks up the pulses emitted by surrounding radars in the 

environment and measures a sequence of pulse descriptor words (PDWs), where a PDW is a data stream may be 

partitioned into two data streams called What and Where. Here the What data stream consists of parameters that 

characterize the functional aspects of radar systems. Such parameters include radio frequency (RF), pulse width 

(PW) and pulse repetition interval PRI, which is directly useful for radar type identification. The data stream 

consists of context-specific parameters. This stream is defined by parameters, such as bearing (Brg) and pulse 
amplitude (PA), that indicate the status (e.g.,position) of emitters in the environment and is less useful than 

What data steam for radar type identification. So in this paper, we choose the RF, PRI and PW (What data 

stream) to compose a PDW. 

 
Figure 2.  ELINT System for intercepting pulses used for this paper. 
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The work presented in this paper is based on the EID real data recorded by a research group (named 

ABC Group) located in Taiwan. The pulse repletion interval (PRI) is in the range of 1.0μs ~10.0μs , the pulse 

width (PW) is in the range of 0.1 μs~10.0 μs , the radio frequency of the carrier wave (RF) is in the range of 

2.0GHz ~18.0GHz. A sample of the radar pulse data set is described in Table 1. 

 The main difficulty is due to the capability limitations of ELINT sensors, which often fail to provide 
crisp value parameters and produce the range of parameter values for the emitters parameters, particularly 

emitters of complex characteristics. Interpretability and transparency of signal identification obtained with FL-

based approach are also worth emphasizing. It is expected that a type-2 fuzzy classifier should explicitly define 

the rule that governs an effective radar emitter type classification. The details of the design method are 

described in following sections. 

 
 

III. TYPE-2 FUZZY CLASSIFIER DESIGN 
 This research emphasis is placed on type-2 fuzzy methodology due to its capabilities to account for 

noisy measurements or operate under jitter disturbances associated with ELINT recordings. Type-2 fuzzy sets 

have been chosen to represent antecedents of fuzzy rules. A template of a fuzzy rule in the Mamdani framework 

is the following 

𝑅𝑛 : 𝑖𝑓 𝑥1  𝑖𝑠 𝐴 1
𝑛  𝑎𝑛𝑑 ⋯𝑎𝑛𝑑 𝑥𝑖  𝑖𝑠 𝐴 𝑖

𝑛  𝑡ℎ𝑒𝑛 𝑦 𝑖𝑠 𝑌𝑗
𝑛 .    (1) 

where 𝑅𝑛  is the nth rule, 𝑛 = 1,⋯𝑁, with each rule having 𝑖 antecedents, 𝐴 𝑖
𝑛 (𝑖 = 1,2,… , 𝐼)  is the type-2 fuzzy 

membership functions of input variable.  𝑌𝑗
𝑛 =  𝑦𝑗

𝑛 , 𝑦
𝑗

𝑛
  is an interval output vector of the 𝑗𝑡ℎ,  which is the 

average of the consequent type-2 fuzzy set representing the class that input features are assigned to. 

 Assume the input vector is 𝑥 =  𝑥1 ,𝑥2 ,⋯ , 𝑥𝐼 . The operation scheme of type-2 Fuzzy Classifier 
involve the following steps: 

1) Compute the membership of 𝑥𝑖  on each 𝐴 𝑖
𝑛 .  𝑢 𝐴 𝑖

𝑛 (𝑥𝑖), 𝑢𝐴 𝑖
𝑛  𝑥𝑖  , 𝑖 = 1,⋯𝐼 𝑛 = 1,⋯𝑁 

2) Compute the firing interval of the n𝑡ℎ rule, 𝐹𝑛(𝒙): 

𝐹𝑛 𝑥 =  𝑢 𝐴 𝑖
𝑛  𝑥𝑖 × ⋯× 𝑢 𝐴 𝑖

𝑛  𝑥𝐼 , 𝑢𝐴 𝑖
𝑛  𝑥𝑖 × ⋯× 𝑢𝐴 𝑖

𝑛  𝑥𝐼  ≡  𝑓 𝑛 ,𝑓𝑛  .   (2) 

3) Perform type-reduction to combine 𝐹𝑛 𝑥  and the corresponding rule consequents. There are many 

such methods. The most commonly used one is the center-of-sets(COS) type-reducer: 
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𝑌𝑐𝑜𝑠  𝒙 =  
 𝑓𝑛𝑦𝑛𝑁
𝑛=1

 𝑓𝑛𝑁
𝑛=1

𝑓𝑛∈𝐹𝑛  𝒙 

𝑦𝑛 ∈𝑌𝑛

=  𝑦𝑙 ,𝑦𝑟 .      (3) 

It has been shown that  

𝑦𝑙 = 𝑚𝑖𝑛𝑘∈ 1,𝑁−1 

 𝑓
𝑛
𝑦𝑛𝑘

𝑛=1 + 𝑓𝑛𝑦𝑛𝑁
𝑛=𝑘+1

 𝑓
𝑛𝑘

𝑛=1 + 𝑓𝑛𝑁
𝑛=𝑘+1

≡
 𝑓

𝑛
𝑦𝑛𝐿

𝑛=1 + 𝑓𝑛𝑦𝑛𝐿
𝑛=𝐿+1

 𝑓
𝑛𝐿

𝑛=1 + 𝑓𝑛𝐿
𝑛=𝐿+1

.                   (4) 

𝑦𝑟 = 𝑚𝑎𝑥𝑘∈ 1,𝑁−1 

 𝑓𝑛𝑦
𝑛𝑘

𝑛=1 + 𝑓
𝑛
𝑦
𝑛𝑁

𝑛=𝑘+1

 𝑓𝑛𝑘
𝑛=1 + 𝑓

𝑛𝑁
𝑛=𝑘+1

≡
 𝑓𝑛𝑦

𝑛𝑅
𝑛=1 + 𝑓

𝑛
𝑦
𝑛𝑅

𝑛=𝑅+1

 𝑓𝑛𝑅
𝑛=1 + 𝑓

𝑛𝑅
𝑛=𝑅+1

.               (5) 

where the switch points L and R are determined by 

 𝑦𝐿 ≤ 𝑦𝑙 ≤ 𝑦𝐿+1.                                            (6) 

𝑦
𝑅
≤ 𝑦𝑟 ≤ 𝑦

𝑅+1
.                 (7) 

and  𝑦𝑛  and  𝑦
𝑛
  have been sorted in ascending order, respectively. 𝑦𝑙  and 𝑦𝑟  can be computed 

efficiently using the Karnik-Mendel (KM) algorithms [15, 16]. To compute yl  and yr, the steps are 

a) Sort 𝑦𝑛  (𝑛 = 1,2,⋯ ,𝑁) in increasing order and call the sorted 𝑦𝑛  by the same name, but now 𝑦1 ≤

𝑦2 ≤ ⋯ ≤ 𝑦𝑁 . Match the weights 𝐹𝑛 𝑥  with their respective 𝑦𝑛  and renumber them so that their index 

corresponds to the renumbered 𝑦𝑛 . 

b) Compute 𝑦𝑙 as 𝑦 =
 𝑦𝑛𝑓𝑛𝑁
𝑛=1

 𝑓𝑛𝑁
𝑛=1

 by initially setting 𝑓𝑛 =
𝑓𝑛+𝑓

𝑛

2
 for  𝑛 = 1,2,⋯ ,𝑁  

c) Find 𝐿(1 ≤ 𝐿 ≤ 𝑁 − 1) such that 𝑦𝐿 ≤ 𝑦 ≤ 𝑦𝐿+1 

d) Set 𝑓𝑛 =  
𝑓
𝑛

𝑛 ≤ 𝑘
𝑓𝑛 𝑛 > 𝑘

  and compute 𝑦 ′ =
 𝑦𝑛 𝑓𝑛𝑁
𝑛=1

 𝑓𝑛𝑁
𝑛=1

 

e) Check if 𝑦 ′ = 𝑦. If yes, stop and 𝑦𝑙 = 𝑦 and 𝐿 = 𝑘. If no, go to Step f. 

f) Set 𝑦 = 𝑦 ′ and go to Step 3.  

The procedure for computing 𝑦𝑟  is very similar to the one for 𝑦𝑙. Just replace 𝑦𝑟  by 𝑦𝑙 and, in Step 3 find 

𝑅(1 ≤ 𝑅 ≤ 𝑁 − 1) such that 𝑦𝑅 ≤ 𝑦 ≤ 𝑦𝑅+1. 

4) Compute the defuzzified output as  

     𝑦 =
𝑦𝑙+𝑦𝑟

2
.              (8) 

The operation scheme of designed type-2 Fuzzy Classifier has been shown in Fig. 3, briefly. 

 
Figure 3.  The operation scheme of design of type-2 Fuzzy Classifier using uncertainty UMF and LMF 

bounds technique. 

 Type-2 Fuzzy Classifier has been set up, its FOU by taking intersections of all upper and lower 

memberships for all features by our heuristic method. If we choose the min operation as intersection, the FOU 

can be expressed as [19] 

 ∀𝑥∈𝑋 𝑢 𝑥 ,𝑢 𝑥  =  ∀𝑥∈𝑋{𝑚𝑖𝑛𝑖 𝑢𝑖 𝑥𝑖  ,𝑚𝑖𝑛𝑖 𝑢𝑖 𝑥𝑖  }                                    (9) 
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where ,𝑢 𝑥  and 𝑢 𝑥   are the minimum UMF and LMF among all UMFs and LMFs for all features, 

respectively. Figure. 4 shows the example of MF of five types emitter RF (low limit) for some data sets obtained 

from the ABC Group of EID Databases, which is the sample and each of five clusters contains 150 data.  

 
Figure 4.  RF (lower limit) for the MFs. 

 

IV. EXPERIMENTAL RESULTS  

In this section, the experiments are performed for the interval valued input data to demonstrate the classification 

capability of the type-2 Fuzzy Classifier. 

 The ELINT repository used for this study contains three parameters: The pulse repletion interval (PRI) 

is in the range of 1.0μs ~10.0μs , the pulse width (PW) is in the range of 0.1  μs ~10.0 μs, and the radio 

frequency of the carrier wave (RF) is in the range of 2.0GHz ~18.0GHz. 

 There were a five types radar emitters of experiments carried out in this research reported here in order 
to examine the capabilities of the proposed type-2 Fuzzy Classifier. Its performance in terms of the error 

deviation level (EDL) was employer in this section. In this experiment, all data are consisted of 150 samples 

containing five emitter types from the emitter samples repository of ABC Group. To perform the testing at 

different levels of additive noise, the error deviation level defined as 

EDLi % =
ξpi

xpi
× 100%        (10) 

where xpi  is the data without noise and ξ
pi

 is random noise. 

 For the interval-value noisy samples is xp =  xp1 , xp2 , xp3 , briefly, xpi = [xpi
L , xpi

U ]  superscript L 

denoted as lower limit and superscript U as upper limit. ξ
pi

= [ξ
pi
L , ξ

pi
U ] is the random noise corresponding to xpi , 

then the noisy testing sample will be xpi = [xpi
L ± ξ

pi
L , xpi

U ± ξ
pi
U ]. Figure. 5 shows an example of triangular Type-

2 Fuzzy Classifier MFs that are generated from the sample data set of Table 1. 
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Figure  5.  Type-2 Fuzzy Classifier for antecedent MFs’ UMF/ LMF 

n this experiment, jitter is normally described in terms of its probability density function (PDF) on 

lower limit( U) edge and upper limit (U) edge. Wiley [22] states that the measurement jitter due to noise is white 

Gaussian, then the corresponding interval [xpi
L , xpi

U ] is produced as 

xpi
L = xpi − rand[(xpi − MinX) ∙ r]       (11) 

xpi
U = xpi + rand[(xpi − MinX) ∙ r]       (12) 

where rand x ∈ [0, x ] is the random function, MinX is the minimum value of all xpi  in the whole 

sequence, and r ∈ [0, x ] is a real number, which is the relative random ratio ( r = 0.2 in this experiment). 

To perform the testing at different levels of introduce the jitter variation to produce testing samples. In this 

experiment, the testing samples with different EDLs (from 0 to 20%) are presented to the Type-2 Fuzzy 

Classifier for performance testing. The testing results which also gained through 100 Monte Carlo simulations 

are listed in Table 2. 

From Table 2, type-2 Fuzzy Classsifier perform achieves an average EDL rate(from 0 to 20%) of 87.5% . 

This explained type-2 Fuzzy Classifier advantage and effectively reduces the effects of uncertainties in radar 

emitter interval-value signals with and jitter variations. 

 

Table 2  Average EDL performance of type-2 Fuzzy Classifier testing samples with jitter variation 
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V. CONCLUSION 
 This paper discuss the type-2 Fuzzy Classifier, analyzes the insensitive to jitter of the EDI classification 

problem. The type-2 Fuzzy Classifier has shown its superior capabilities to handle the uncertainty. The 
robustness to noise is here of special importance. Monte Carlo simulation results show that the type-2 Fuzzy 

Classifier not only achieves better identification capability, but also obtains better adaptability to jitter. With 

these results achieved in this paper, the proposed type-2 Fuzzy Classifier may be embedded into ELINT system 

and enhance military applications (such as reconnaissance and threat reaction). In addition, as part of future 

work it is intended to explore the ways that uncertainty bounds of the classifier’s output can be effectively 

exploited with a view to improving the performance of the classifier. Only the central point of the output 

interval has been utilized so far.  
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